# dnn-hmm-asr **Repository Path**: gaoyongyu/dnn-hmm-asr ## Basic Information - **Project Name**: dnn-hmm-asr - **Description**: Hybrid DNN-HMM model for isolated digit recognition - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-08-26 - **Last Updated**: 2021-08-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Hybrid DNN-HMM model for isolated digit recognition Python implementation of a hybrid DNN-HMM models for isolated digit recognition. Forced alignments are obtained from a GMM-HMM model and used to train the DNN. The DNN is a simple multi-layer perceptron (MLP) implemented using scikit-learn. ### How to run ``` python3 submission.py train test ``` * `train` is the training data * `test` is the test data The optional arguments are: * `--mode`: Type of model (`mlp`, `hmm`). Default: `mlp` * `--niter`: Number of iterations to train the HMM. Default = 10 * `--nstate`: Number of states in HMM model. Default = 5 * `--nepoch`: Maximum number of epochs for training the MLP. Default=10 * `--lr`: Learning rate for the MLP. Default=0.01 * `--debug`: Uses only top 100 utterances for train and test ### Help This code is based on a template provided by Shinji Watanabe (Johns Hopkins University), written for a course project. For assistance, contact `draj@cs.jhu.edu`.